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We uncover the basis for the validity of the Tsallis statistics at the onset of chaos in logistic maps. The
dynamics within the critical attractor is found to consist of an infinite family of Mori’s q-phase transitions of
rapidly decreasing strength, each associated with a discontinuity in Feigenbaum’s trajectory scaling function �.
The value of q at each transition corresponds to the same special value for the entropic index q, such that the
resultant sets of q-Lyapunov coefficients are equal to the Tsallis rates of entropy evolution.
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I. INTRODUCTION

Searches for evidence of nonextensive �1,2� properties at
the period-doubling onset of chaos in logistic maps—the
Feigenbaum attractor—have at all times yielded affirmative
responses, from the initial numerical studies �3� to subse-
quent heuristic investigations �4�, and the more recent rigor-
ous results �5,6�. However, a critical analysis and a genuine
understanding of the basis for the validity at this attractor of
the nonextensive generalization �1,2� of the Boltzmann–
Gibbs �BG� statistical mechanics—here referred to as
q-statistics—is until now lacking. In this paper, we clarify
the circumstances under which the features of q-statistics are
observed and, most importantly, we demonstrate that the
mechanism by means of which the Tsallis entropic index q
arises is provided by the occurrence of dynamical phase tran-
sitions of the kind described by the formalism of Mori and
colleagues �7�. These transitions, similar to first-order ther-
mal phase transitions, are associated with trajectories that
link different regions within a multifractal attractor. The on-
set of chaos is an incipiently chaotic attractor, with memory-
preserving, nonmixing, phase-space trajectories. Because
many of its properties are familiar, and have been well un-
derstood for many years, it is of interest to explain how
previous knowledge fits in with this different perspective.

The Feigenbaum attractor is the classic one-dimensional
critical attractor with universal properties in the renormaliza-
tion group �RG� sense, i.e., shared by all unimodal �one
hump� maps with the same degree of nonlinearity. The static
or geometrical properties of this attractor have been under-
stood since long ago �8–10� and are represented, for ex-
ample, by the generalized dimensions D�q� or the spectrum
of dimensions f��̃� that characterize the multifractal set
�9,10�. The dynamical properties that involve positions
within the attractor also display universality, and, as we see
below, these are conveniently given in terms of the disconti-
nuities in Feigenbaum’s trajectory scaling function �, which
measures the convergence of positions in the orbits of period
2n as n→� �8�. Let us first recall that the Feigenbaum at-
tractor has a vanishing ordinary Lyapunov coefficient �1 and
that the sensitivity to initial conditions �t does not converge
to any single-valued function and displays fluctuations that
grow indefinitely �7,12–14�. For initial positions at the at-
tractor �t develops a universal self-similar temporal structure

and its envelope grows with t as a power law �3,7,12–14�.
We are interested here in determining the detailed depen-
dence of the aforementioned structure on both the initial po-
sition x0 and the observation time t as this dependence is
preserved by the infinitely lasting memory. Therefore, we
shall not consider the effect of averaging with respect to x0
and/or t, explored in other studies �12,15�, as this would
obscure the fine points of the dynamics.

The central assertion of the q statistics with regard to the
dynamics of critical attractors is a sensitivity to initial
conditions �t associated to the q-exponential functional
form, i.e., the “q-deformed” exponential function expq�x�
��1− �q−1�x�−1/�q−1�. From such �t a q-generalized
Lyapunov coefficient �q can be determined just as �1 is read
from an exponential �t. The �q is presumed to satisfy a
q-generalized identity �q=Kq �10,16� where Kq is an entropy
production rate based on the Tsallis entropy Sq, defined in
terms of the q-logarithmic function lnq y��y1−q−1� / �1−q�,
the inverse of expq�x�. Unlike �1 for �ergodic� chaotic attrac-
tors, the coefficient �q is dependent on the initial position x0
and therefore �q constitutes a spectrum �and also Kq� that can
be examined by varying this position.

The fixed values of the entropic index q are obtained from
the universality class parameters to which the attractor be-
longs. For the simpler pitchfork and tangent bifurcations
there is a single well-defined value for the index q for each
type of attractor as a single q-exponential describes the sen-
sitivity �19�. For multifractal critical attractors, the situation
is more complicated and there appears to be a multiplicity of
indexes q but with precise values given by the attractor scal-
ing functions. As shown below, the sensitivity takes the form
of a family of interweaved q exponentials. The q indexes
appear in conjugate pairs, q and Q=2−q, as these corre-
spond to switching the starting and finishing trajectory posi-
tions. We show that q and Q are related to the occurrence of
pairs of dynamical “q-phase” transitions, which connect
qualitatively different regions of the attractor �7,14�. These
transitions are identified as the source of the special values
for the entropic index q. For the Feigenbaum attractor an
infinite family of such transitions take place but are of rap-
idly decreasing strength.

In Sec. II we recall the essential features of the statistical-
mechanical formalism of Mori and colleagues �7� to study
dynamical phase transitions in attractors of nonlinear maps
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and follow this by a summary of expressions of the q statis-
tics. Then, in subsequent sections we present known proper-
ties and develop others for the dynamics within the Feigen-
baum attractor. Among these we derive the sensitivity �t, in
terms of the trajectory scaling function �, and use this to
make contact with both Mori’s and Tsallis’ schemes. We dis-
cuss our results.

II. STATISTICAL MECHANICS FOR CRITICAL
ATTRACTORS

During the late 1980s Mori and coworkers developed a
comprehensive thermodynamic formalism to characterize
drastic changes at bifurcations and at other singular phenom-
ena in low dimensional maps �7�. The formalism was further
adapted to study critical attractors and was illustrated by con-
sidering the specific case of the period-doubling onset of
chaos in the logistic map �7,13,14�. For critical attactors the
scheme involves the evaluation of fluctuations of the gener-
alized finite-time Lyapunov coefficient

��t,x0� =
1

ln t
�
i=0

t−1

ln� df��
�xi�

dxi
�, t � 1, �1�

where f��x� is here the logistic map, or its extension to non-
linearity of order z	1,

f��x� = 1 − ��x�z, − 1 
 x 
 1, 0 
 � 
 2. �2�

We denote by ���z� the value of the control parameter � at
the onset of chaos, with ���2�=1.40115. . . . Note the re-
placement of the customary t by ln t in Eq. �1�, as the ordi-
nary Lyapunov coefficient �1 vanishes for critical attractors,
here at ��, t→�.

The density distribution for the values of �, at t�1,
P�� , t�, is written in the form �7,14�

P��,t� = t−����P�0,t� , �3�

where ���� is a concave spectrum of the fluctuations of �
with minimum ��0�=0 and is obtained as the Legendre
transform of the “free energy” function ��q�, defined as

��q� � − lim
t→�

ln Z�t,q�
ln t

, �4�

where Z�t ,q� is the dynamic partition function

Z�t,q� � 	 d�P��,t�t−�q−1��. �5�

The “coarse-grained” function of generalized Lyapunov co-
efficients ��q� and the variance v�q� of P�� , t� are given,
respectively, by �7,14�

��q� �
d��q�

dq
and v�q� �

d��q�
dq

. �6�

Note the special weight t−�q−1�� in Z�t ,q� and in the quanti-
ties derived from it. The functions ��q� and ���� are the
dynamic counterparts of the Renyi dimensions D�q� and the
spectrum f��̃� that characterize the geometric structure of the
attractor �9�.

As with ordinary thermal first-order phase transitions, a
q-phase transition is indicated by a section of linear slope
mc=1−q in the spectrum �free energy� ����, a discontinuity
at q=q in the Lyapunov function �order parameter� ��q�, and
a divergence at q in the variance �susceptibility� v�q�. For
the onset of chaos at ���z=2�, a single q-phase transition
was numerically determined �7–13� and found to occur at a
value close to mc=−�1−q�
−0.7. Arguments were provided
�7–13� for this value to be mc=−�1−q�=−ln 2/ ln �=
−0.7555. . ., where �=2.50290. . . is one of the Feigenbaum’s
universal constants. Our analysis below shows that this ini-
tial result gives a broad picture of the dynamics at the
Feigenbaum attractor and that actually an infinite family of
q-phase transitions of decreasing magnitude takes place at
��.

Independently, Tsallis et al. �3� proposed that for critical
attractors, the sensitivity to initial conditions �t �defined as
�t�x0�� limx0→0�xt /x0� where x0 is the initial separa-
tion of two orbits and xt that at time t� has the form

�t�x0� = expq��q�x0�t� , �7�

which yields the customary exponential �t with �1 when q
→1. In Eq. �7� q is the entropic index and the initial-
position-dependent �q�x0� are the q-generalized Lyapunov
coefficients. Tsallis et al. �3� also suggested that the identity
K1=�1 �16�, where the rate of entropy production K1 is given
by

K1t = S1�t� − S1�0�, t large, �8�

and

S1 = − �
i

pi ln pi, �9�

for an ensemble of trajectories with instantaneous distribu-
tion pi, would be generalized to Kq=�q, where the
q-generalized rate of entropy production Kq is defined via

Kqt = Sq�t� − Sq�0�, t large, �10�

and where

Sq � �
i

pi lnq pi
−1 =

1 − �i

W
pi

q

q − 1
�11�

is the Tsallis entropy. These properties have been corrobo-
rated to hold at ���z� numerically �3,15� for sets of trajecto-
ries with x0 spread throughout −1
x0
1 and analytically
for specific classes of trajectories starting near x0=0 and ob-
served at specific times of the form t= �2k+1�2n−1, k
=0,1 ,2. . ., and n=1,2 , . . . �5–17�. We explain the rationale
for these particular choices of x0 and t in Sec. III where we
examine the structure of trajectories inside the attractor �see
Fig. 1�.

III. DYNAMICS WITHIN THE FEIGENBAUM
ATTRACTOR

In Fig. 1�a� we have plotted �in logarithmic scales�, the
first few absolute values of iterated positions �xt� of the orbit
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at ���z=2� starting at x0=0 where the labels indicate itera-
tion time t. Note the structure of horizontal bands and that in
the top band lie half of the attractor positions �odd times�, in
the second band a quarter of the attractor positions, and so
on. The top band is eliminated by functional composition of
the original map, that is by considering the orbit generated
by the map f��

�2��0� instead of f��
�0�. Successive bands are

eliminated by considering the orbits of f��

�2j��0�, j=1,2 . . . .
The positions of the top band �odd times� can be reproduced
approximately by the positions of the band below it �times of
the form t=2+4n, n=0,1 ,2. . .� by multiplication by a factor
equal to �, e.g., �x1�
��x2�. Likewise, the positions of the
second band are reproduced by the positions of the third
band under multiplication by �, e.g., �x2�
��x4�, and so on.
In Fig. 1�b� we show a logarithmic scale plot of 1− �xt� that
displays a band structure similar to that in Fig. 1�a�, in the
top band lie again half of the attractor positions �even times�
and below the other half �odd times� is distributed in the
subsequent bands. This time the positions in one band are
reproduced approximately from the positions of the band ly-
ing below it by multiplication by a factor �z, e.g., 1− �x3�

�z�1− �x5��. The properties among bands of iterate posi-
tions merely follow from repeated composition and rescaling
of the map and represent a graphical construction of the

Feigenbaum RG transformation Rf�x���f(f�x /��), where
��z=2�=2.50290. . . .

Also, the trajectory with initial condition x0=0 maps out
the Feigenbaum attractor in such a way that the absolute
values of succeeding �time-shifted �= t+1� positions �x��
form subsequences with a common power-law decay of the
form �−1/1−q with q=1−ln 2/ ln ��z�, with q
0.24449 when
z=2. See how positions fall along straight diagonal lines in
Fig. 1�a�. That is, the entire attractor can be decomposed into
position subsequences generated by the time subsequences
�= �2k+1�2n, each obtained by running over n=0,1 ,2 , . . . for
a fixed value of k=0,1 ,2 , . . . . Noticeably, the positions in
these subsequences can be obtained from those belonging to
the “superstable” periodic orbits of lengths 2n, i.e., the 2n

-cycles that contain the point x=0 at �̄n��c�0� �8�. Specifi-
cally, the positions for the main subsequence k=0, that con-
stitutes the lower bound of the entire trajectory �see Fig.
1�a��, can be identified to be �x2n�
dn,0=�−n, where dn,0

��f �̄n

�2n−1��0�� is the “nth principal diameter” defined at the

2n-supercycle, the distance of the orbit position nearest to x
=0 �8�. The main subsequence can be expressed as

�xt� = exp2−q�− �qt� �12�

with �q= �z−1�ln � / ln 2. Interestingly, this analytical result
for �xt� can be seen to satisfy the dynamical fixed-point rela-
tion, h�t�=�h�h�t /��� with �=21/�1−q�. See �5,6� for z=2 and
�17� for general z	1.

We now work out the relationship between the trajectory
scaling function � and the sensitivity �t at ��. To begin with
we recall �8� the general definition of the diameters dn,m that
measure the bifurcation forks that form the period-doubling
cascade sequence. The dn,m in these orbits are defined as the
distances of the elements xm, m=0,1 ,2 , . . . ,2n−1, to their

nearest neighbors f �̄n

�2n−1��xm�, i.e.,

dn,m � f �̄n

�m+2n−1��0� − f �̄n

�m��0� . �13�

For large n, dn,0 /dn+1,0
−��z�; ��2�=�. Furthermore,
Feigenbaum �11� constructed the auxiliary function

�n�m� =
dn+1,m

dn,m
�14�

to quantify the rate of change of the diameters and showed
that in the limit n→� it has finite �jump� discontinuities at
all rationals of the form m /2n+1. So, considering the variable
y=m /2n+1 one obtains �8,11�, omitting the subindex n,
��0�=−1/�, but ��0+�=1/�z, and through the antiperiodic
property ��y+1/2�=−��y�, also ��1/2�=1/�, but ��1/2
+0+�=−1/�z. Other discontinuities in ��y� appear at y
=1/4 ,1 /8 ,3 /8, etc. In most cases it is only necessary to
consider the first few as their magnitude decreases rapidly
�see, e.g., Fig. 31 in Ref. �8��. The discontinuities of �n�m�
can be suitably obtained by first generating the superstable
orbit 2� at �� and then plotting the position differences �xt

−xm�= �f��

�t� �0�− f��

�m��0�� for times of the form t=2n−m, n

=0,1 ,2 , . . ., in logarithmic scales. The distances that separate
positions along the time subsequence correspond to the loga-

FIG. 1. �a� Absolute values of �xt� vs t in logarithmic scales for
the orbit with initial condition x0=0 at �� of the logistic map z
=2. The labels indicate iteration time t. �b� Same as �a� with �xt�
replaced by 1− �xt�.
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rithm of the diameters dn,m. See Figs. 1�a� and 1�b� where the
constant spacing of positions along the main diagonal pro-
vide the values for ln dn,0
−n ln � and ln dn,1
−n ln �z, re-
spectively. The constant slope sm of the resulting time sub-
sequence data is related to �n�m�, i.e., �n�m�=2sm. See Figs.
1�a� and 1�b� where the slopes of the main diagonal subse-
quences have the values −ln � / ln 2 and −z ln � / ln 2, respec-
tively. From these two slopes the value of the largest jump
discontinuity of �n�m� is conveniently determined.

A key factor in obtaining our results is the fact that the
sensitivity �t�x0� can be evaluated for trajectories within the
attractor via consideration of the discontinuities of ��y�. Our
strategy for determining �t�x0� is to chose the initial and the
final separation of the trajectories to be the diameters x0
=dn,m and xt=dn,m+t, t=2n−1, respectively. Then, �t�x0� is
obtained as

�t�x0� = lim
n→�

�dn,m+t

dn,m
�n

. �15�

Note that in this limit x0→0, t→� and the 2n-supercycle
becomes the onset of chaos �the 2�-supercycle�. Then, �t�x0�
can be written as

�t�m� 
 ��n�m − 1�
�n�m�

�n

, t = 2n − 1, n large, �16�

where we have used ��n�m��n
�i=1
n �di+1,m /di,m� and

di+1,m+2n =−di+1,m. Note that for the inverse process, starting
at x0=dn,m+t=−dn,m−1 and ending at xt�=dn,m=−dn,m−1+t�,
with t�=2n+1 one obtains

�t��m − 1� 
 � �n�m�
�n�m − 1�

�n

, t� = 2n + 1, n large.

�17�

Given the known properties of �n�m� we can readily ex-
tract those for �t�m� for general nonlinearity z	1. Taking
into account only the first 2M, M =1,2 , . . . discontinuities of
�n�m� we have the antiperiodic step function

1/�n�m� = ��l, l2n−M 
 m � �l + 1�2n−M

− �l, �2M + l�2n−M 
 m � �2M + l + 1�2n−M ,


�18�

with l=0,1 , . . . ,2M −1, and this implies that �t�m�=1 when
�n�m� is continuous at m, and

�t�m� = � �l

�l+1
�n

, or, �t��m� = � �l

�l+1
�−n

, �19�

when �n�m� has a discontinuity at m= l2n−M. As we make
clear below, these behaviors for the sensitivity reflect the
multiregion nature of the multifractal attractor and the
memory retention of these regions in the dynamics. Thus,
�t�m�=1 �or �q�x0�=0� corresponds to trajectories that depart
and arrive in the same region, while the power laws in Eq.
�19� correspond to a departing position in one region and
arrival at a different region and vice versa, the trajectories
expand in one sense and contract in the other.

IV. ORIGIN OF TSALLIS’ q INDEX

We now make explicit the mentioned link between the
occurrence of Mori’s q-phase transitions and the q-statistical
dynamical properties at ��. Consider M =1, the simplest ap-
proximation to �n�m�, yet it captures the effect on �t of the
most dominant trajectories within the attractor. This is to
assume that half of the diameters scales as �0=�z �as in the
most crowded region of the attractor, x
1� while the other
half scales as �1=� �as in the most sparse region of the
attractor, x
0�. With use of the identity An= �1+ t / �2k
+1��ln A/ln 2, t=2n− �2k+1�, �t�m�= ��0 /�1�n can be rewritten
as the q-exponential

�t�m� = expq0
��q0

�k�t� , �20�

where

q0 = 1 −
ln 2

�z − 1�ln �
, �21�

and where

�q0

�k� =
�z − 1�ln �

�2k + 1�ln 2
, k = 0,1, . . . . �22�

The �2k+1�−1 term in �q0

�k� arises from the time shift involved
in selecting different initial positions x0
1 �see Fig. 1 and
Ref. �6��. Similarly, the sensitivity for the trajectories in the
inverse order yields

�t��m� = expQ0
��Q0

�k�t� , �23�

where Q0=2−q0, and where �Q0

�k� =−2�q0

�k�. The factor of 2 in

�Q0

�k� appears because of a basic difference between the orbits
of periods 2n and 2�. In the latter case, to reach xt�
0 from
x0
1 at times t�=2n+1 the iterate necessarily moves into
positions of the next period 2n+1, and orbit contraction is
twice as effective than expansion. Note that the relationship
between the indexes Q0=2−q0 for the couple of conjugate
trajectories stems from the property expq�x�=1/exp2−q�−x�.
For z=2 one obtains Q0
1.7555 and q0
0.2445, this latter
value agrees with that obtained in several earlier studies
�3,6�. From the results for �q0

�k� and �Q0

�k� we can construct the
two-step Lyapunov function

��q� = ��q0

�0�, − � � q 
 q0,

0, q0 � q � Q0,

�Q0

�0�, Q0 
 q � � .
� �24�

For z=2 one has �q0

�0�=ln � / ln 2
1.323 and �Q0

�0�=−2�q0

�0�

−2.646 �see Fig. 2�a��.

When the next discontinuities of importance in ��y� are
taken into account new information on �t�x0� is obtained in
the form of additional pairs of q-exponentials as in Eqs. �20�
and �23�. In the next approximation for �n�m� there are four
scaling factors, �0=�z, �1, �2, �3=�, where �1=1/��1/4�
�with �1
5.458 for z=2� and �2=1/��3/4� �with �2


2.195 for z=2�. These last values are associated to the two
“midway” regions between the most crowded and most
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sparse regions of the attractor. We have now three values for
the q index, q0, q1, and q2 �together with the conjugate val-
ues Q0=2−q0, Q1=2−q1 and Q2=2−q2 for the inverse tra-
jectories�. For each value of q there is a set of q-Lyapunov
coefficients running from a maximum �qj,max to zero �or a

minimum �Qj,min to zero�. From the results for �qj

�k� and �Qj

�k�,

j=0,1 ,2 we can construct three Lyapunov functions � j�q�,
−��q��, each with two jumps located at q=qj =1
−ln 2/ ln � j�z� /��z� and q=Qj =2−qj. Similar results are ob-
tained when more discontinuities in �n�m� are taken into
account.

Direct contact can be established now with the formalism
developed by Mori and coworkers and the q-phase transition
reported in Ref. �14�. Each step function for ��q� can be
integrated to obtain the spectrum ��q����q��d� /dq� and
from this its Legendre transform �������− �1−q���. We il-
lustrate this with the �n�m� approximated with only two
scale factors and present specific values when z=2. The free
energy functions ��q� and ���� obtained from the two-step
��q� determined above and shown in Fig. 2�a� are given by

��q� = ��q0

�0��q − q0� , q 
 q0,

0, q0 � q � Q0,

�Q0

�0��q − Q0� , q � Q0,
� �25�

and

���� =��1 − Q0�� , �Q0

�0� � � � 0,

�1 − q0�� , 0 � � � �q0

�0�. �26�

See Fig. 2�b�. The constant slopes of ���� represent the
q-phase transitions associated to trajectories linking two re-
gions of the attractor, x
1 and x
0, and their values 1
−q0 and q0−1 correspond the index q0 obtained for the
q-exponentials �t in Eqs. �20� and �23�. The slope q0−1

−0.7555 coincides with that originally detected in Refs.
�13,14�. When we consider also the next discontinuities of
importance in ��y� at y=1/4 ,3 /4 we obtain a couple of two
q-phase transitions for each of the three values of the q in-
dex, q0, q1, and q2. The constant slope values for the q-phase
transitions at 1−q0 and q0−1 appear again, but now we have
two other pairs of transitions with slope values 1−q1 and
q1−1, and, 1−q2 and q2−1, that correspond, respectively, to
orbits that link the most crowded region of the attractor to
the “medium crowded” region, and to orbits that link this
medium crowded region with the “medium sparse” region of
the attractor.

V. EQUALITY BETWEEN q-LYAPUNOV COEFFICIENTS
AND RATE OF q-ENTROPY CHANGE

Next, we verify the equality between the q-Lyapunov co-
efficients �qi

�k� and the q-generalized rates of entropy produc-
tion Kqi

�k�. We follow the same procedure as in Ref. �6�. Con-
sider a large number N of trajectories with initial positions
uniformly distributed within a small interval of length x0
containing the attractor point x0. A partition of this interval is
made with N nonintersecting intervals of lengths �i,0 �i
=1,2 , . . . ,N�. For x0 sufficiently small, after t=2n−1, or
t�=2n+1, iterations these interval lengths transform accord-
ing to

�i,t

�i,0
= � �l

�l+1
�n

or
�i,t�

�i,0
= � �l

�l+1
�−n

�27�

�recall �n�m� has a discontinuity at m= l2n−M�. We observe
that the interval ratios remain constant; that is, �i,0 /x0
=�i,t /xt, since the entire-interval ratio xt /x0 scales
equally with t. Thus, the initial number of trajectories within
each interval N�i,0 /x0 remains fixed in time, with the con-
sequence that the original distribution stays uniform for all
times t�T, where T→� as x0→0. We can now calculate
the rate of entropy production. This is more easily done with
the use of a partition of W equal-sized cells of length �. If we
denote by Wt the number of cells that the ensemble occupies
at time t and by xt the total length of the interval these cells
form, we have Wt=xt /� or Wt= �xt /x0��x0 /��, and in
the limit �→0, x0 /�→1 we obtain the simple result Wt
=�t. As the distribution is uniform, and recalling that Eq. �7�

FIG. 2. q-phase transitions for the main discontinuity in �n�m�
with index values q0 and Q0=2−q0. The solid lines are the piece-
wise continuous functions given in the text, whereas the solid
circles are the same functions calculated from the partition function
Z�t ,q� with the piecewise ���� as input. See text for details.
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for �t holds in all cases, the q entropy is given by

Sqj
�t� = lnqj

Wt = �qj

�k�t , �28�

while Kqj

�k�=�qj

�k�, as Wt=0=1.
It is important to clarify the circumstances under which

the equalities �q
�k�=Kq

�k� are obtained as these could be inter-
preted as shortcomings of the formalism. First of all, the rate
Kq does not generalize the trajectory-based Kolmogorov–
Sinai �KS� entropy K1 that is involved in the well-known
Pesin identity �1=K1 �8–10�. Presumably, the q-generalized
KS entropy Kq would be defined in the same manner as K1
with the use of Sq in place of S1. The rate Kq is determined
from values of Sq only at two different times �10�. The rela-
tionship between K1 and K1 has been investigated for several
chaotic maps �18�, and it has been established that the equal-
ity K1=K1 occurs during an intermediate stage in the evolu-
tion of the entropy S1�t�, after an initial transient dependent
on the initial distribution of positions and before an
asymptotic approach to a constant saturation value. Here we
have seemingly looked into the analogous intermediate re-
gime in which one would expect Kq=Kq, as we explain be-
low, however, the answer to this question is not analyzed in
this paper.

We have only considered initial conditions within small
distances outside the positions of the Feigenbaum attractor
and have not focused on the initial transient behavior re-
ferred to in the above paragraph. As for the final asymptotic
regime mentioned above, it should be kept in mind that the
distance between trajectories, from which we obtain �q, al-
ways saturates because of the finiteness of the available
phase space �the multifractal subset of �−1,1� that is the
Feigenbaum attractor�. It is widely known �10� that special
care needs to be taken in determining �1 from a time series to
avoid saturation due to folding and similar limitations occur
for �q

�k�. Separation of incipiently chaotic trajectories, just as
separation of chaotic ones, undergo two different processes:
stretching, which leads to the q-exponential regime in �t, and
folding, which keeps the orbits bounded. Therefore for t,
sufficiently large Eq. �7� would be no longer valid, just as in
the exponential �t of chaotic attractors. This is the reason
there is a saturation time T in our determination of �q

�k�, and
this, consequently, supports our use of the rates Kq

�k� in �q
�k�

=Kq
�k�.

VI. CONCLUDING REMARKS

Our most striking finding is that the dynamics at the onset
of chaos is constituted by an infinite family of Mori’s
q-phase transitions, each associated to orbits that have com-
mon starting and finishing positions located at specific re-
gions of the attractor. Each of these transitions is related to a
discontinuity in the � function of “diameter ratios,” and this,
in turn, implies a q exponential �t and a spectrum of
q-Lyapunov coefficients—equal to the Tsallis rate of entropy
production—for each set of attractor regions. The transitions
come in pairs with specific conjugate indexes q and Q=2
−q, as these correspond to switching the starting and finish-
ing orbital positions. Since the amplitude of the discontinui-

ties in � diminishes rapidly, in practical terms there is only
need of evaluation for the first few of them. The dominant
discontinuity is associated to the most crowded and sparse
regions of the attractor, and this alone provides a very rea-
sonable description of the dynamics, as found in earlier stud-
ies �3–6�. The special values for the Tsallis entropic index q
in �t are equal to the special values of the variable q in the
formalism of Mori and colleagues at which the q-phase tran-
sitions take place. Therefore, we have identified the cause or
source for the entropic index q observed at the Feigenbaum
attractor.

We found that the sensitivity to initial conditions at the
onset of chaos does not have the form of a single q exponen-
tial but of infinitely many interlaced q exponentials. More
precisely, we found a hierarchy of such families of interlaced
q exponentials. An intricate state of affairs that befits the rich
scaling features of a multifractal attractor. This dynamical
organization is difficult to resolve from the consideration of a
straightforward time evolution, i.e., starting from an arbitrary
position x0 within the attractor and recorded at every time t.
In this case what is observed �14� are strongly fluctuating
quantities that persist in time with a tangled pattern structure
that presents memory retention. On the other hand, if specific
initial positions with known location within the multifractal
are chosen, and subsequent positions are observed only at
preselected times, when the trajectories visit another region
of choice, a well-defined q-exponential form for �t emerges.
The specific value of q and the associated Lyapunov spec-
trum �q can be clearly determined. For each case the value of
q is given by the values of the trajectory scaling function � at
one of its discontinuities, while the corresponding spectrum
�q reflects all starting positions in the multifractal region
where the trajectories originate. We remind the reader that
the results presented here are independent from the dynamics
of approach to the attractor as we have not considered the
time evolution of initial positions x0 outside the attractor and
leave this case for future attention.

Interestingly, the crossover from q statistics to BG statis-
tics can be observed for control parameter values in the vi-
cinity of the onset of chaos, ����, when the attractor con-
sists of 2n bands, n large. The Lyapunov coefficient �1 of the
chaotic attractor decreases with �=�−�� as �1�2−n

���, �=ln 2/ ln ��z�, where � is the second Feigenbaum
constant �8�. The chaotic orbit consists of an interband peri-
odic motion of period 2n and an intraband chaotic motion.
The expansion rate �i=0

t−1 ln�df��xi� /dxi� grows as ln t for t
�2n but as t for t�2n �7,14�. This translates as Tsallis dy-
namics with q�1 for t�2n but BG dynamics with q=1 for
t�2n.

In summary, we have obtained further understanding
about the nature of the dynamics at the onset of chaos in
logistic maps. We exhibited links between original develop-
ments, such as Feigenbaum’s � function and Mori’s q-phase
transitions, with more recent advances, such as q-exponential
sensitivity to initial conditions �5� and q-generalized identity
between Lyapunov coefficients and rate of entropy change
�6�. Chaotic orbits possess a time-irreversible property that
stems from mixing in phase space and loss of memory, but
orbits within critical attractors are nonmixing and have no
loss of memory. Our results apply to many other unimodal
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one-parameter families of maps. One example is the expo-
nential function map f�y�=1−� exp��y�−z� studied in Ref.
�15� as the simple �monotonic� change of variable �x�z
=exp��y�−z� indicates. Comparable results would be expected
to hold for the two other routes to chaos �8�, intermittency
and quasiperidicity, in low-dimensional maps as these exhibit
both q-phase transitions �7� and q sensitivity to initial condi-
tions �4,19�. Clearly, our results establish a feasible numeri-
cal scheme to determine the family of values for the entropic
index q associated to a critical multifractal attractor �here via
the diameter function ��. Conversely, the computation of the

sensitivity �t at the onset of chaos offers an original means to
evaluate Feigenbaum’s trajectory scaling function � or its
equivalent for other critical attractors. Additionally and re-
markably, the perturbation with noise of this attractor brings
out the main features of glassy dynamics in thermal systems
�20�.
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